Business Drivers When Constructing a Bio-Sciences Facility
The life sciences company's construction services partner must understand the firm's present and - more importantly - future business model before work begins on a new facility.
Jerry Guillorn and Stephen Neeson, LEED® AP, Structure Tone  (Biotech Location Guide 2008)

Like reading, writing and 'rithmetic, the three Rs of constructing a biotech/life science facility are constructability, efficiency in the field, and investing only in what you need today while providing scalability for tomorrow. Quality construction and meeting schedules and budgets are the expected deliverables for any construction services provider. Foundations, superstructure, infrastructure and systems, current Good Manufacturing Practice (cGMP) finishes, and all the components that comprise a facility are a given. The differentiator is a builder that approaches the project from the owner's perspective, as a vested partner in the owner's business model rather than as just a services provider.

Speed to market is the cardinal rule, and it is critical that the contractor not simply espouses this, but manages the process to achieve it. There is no single silver bullet. The successful contractor must be adept at squeezing maximum efficiency at each juncture - minimizing lags at every step in the sequence, minimizing time in the field, minimizing wait time for equipment - while never compromising quality or losing sight of the final steps of commissioning and qualification.

A fundamental issue for the contractor - and indeed the entire project team - to understand when approaching a biotech/life science project is that the facilities are designed from the process out to the site, but are constructed from the site back to the process. The latter ends up being the driving force behind scalability.

Built for Today, Scalable for Tomorrow
Equipment selection and arrangement dictate the scope of the project. Skid-mounted or modular components - such as clean-in-place (CIP) or steam-in-place (SIP) systems - and the type of process control systems must all be decided early by the team. Will the product be produced in a closed system? Can the suites be planned, designed, and built to accommodate greater flexibility utilizing "plug-n-play" concepts? What services and utilities are required for the main purpose of the space? These decisions have a significant impact on the room classification and, therefore, major critical systems. This then becomes a major budget driver. Reducing the complexity of the required HVAC systems saves the owner money on a first-cost and life-cycle basis.

Scalability is a paramount issue for the owner, and thus the team - an issue that strongly impacts the team's equipment decisions. The ideal facility provides the owner with the flexibility to change both process and product as the business evolves - possible moves from bench-top research to test run, to small batch to small train, to full production and, possibly, even changes from parenteral to lyophilized products. The right contractor plays an integral role in the successful installation and efficacy of such scalable processes.

Discussions on scalability relative to future expansion need to take place early on, with a perspective on how additional future capacity will be installed without disrupting ongoing operations or dramatically changing room/suite/facility classifications. Contractor involvement in these decisions is critical so that significant capital investment is not needlessly put in place only to be taken out later to accommodate additional capacity.

Critical utility systems such as HVAC, steam, chillers, boilers, and DI and WFI have significant impact on the cost efficiency and success of the scalability of any facility. The capital dollars required for base building systems are much less than those required for special equipment. The key is to program the facility by classification of individual spaces and move from lower to higher as the facility evolves. It is not necessary to build entire suites to class 100 standards if this level is only required for specific processes/equipment and class 10,000 is appropriate for the remainder of the facility. These decisions are critical, and this is where the value engineering (VE) and constructability processes engaged in by the contractor prove crucial.

The Project Fulcrum
Through the value engineering/value management process, the life cycle of systems (building structure, foundation, exterior treatments, vibration and noise control, mechanical, electrical, life safety, process utilities, etc.) and the appropriateness of their capacity versus the facility purpose are critically evaluated. By analyzing systems - as opposed to finishes, fixtures, and components - large dollar items/concepts are identified and thoroughly scrutinized to ensure best value for the capital investment, both short- and long-term. Formal value engineering and constructability sessions ideally include the owner's end user, facility manager, maintenance and engineering personnel, the design team and the construction team, and regulatory, commissioning, and qualification team members.

In the constructability review phase, the contractor evaluates the approach to every phase of work through the lens of the schedule as well as the most appropriate means and methods to accomplish the work. It is also at this time that the contractor scrutinizes the means and methods of how the facility will be built, with a particular view on serviceability (for example, valve locations), future use, and how to best accommodate tomorrow's needs in light of what is being built and installed today. For example, three-dimensional modeling of critical systems, such as piping, performed early in the constructability review process facilitates the order, release, and verification of dimensional controls so that equipment arrives ready to rig in place.

A trend in the marketplace is increased use of 3-D design assist drawings from the trades that are incorporated into Building Information Management (BIM) programs and systems. Utilizing this tool is a decision that has to be made by the entire team at the very beginning of the project, as the design team will be required to prepare their documents using a 3-D program. With this approach, the design development level documents are given to qualified subcontractors in critical trades (usually structural, HVAC, piping, and electrical) who use the documents to prepare dimensioned routing plans and shop drawings. These are then incorporated into what become the construction documents that are, in turn, updated to become as-builts incorporated into the owner's BIM system. The keys to success for this approach are a design team that uses 3-D design, a contractor that understands what to request from the trades, and qualified subcontractors that have in-house 3-D design capability.

Other possible means and methods discussions revolve around current market conditions relative to building commodities and trades. For commodities, investigations may focus on current supplies of steel, concrete, copper, stainless steel, sheetrock, and sheet metal, among others, and the availability and delivery time frame for each. For trades, analysis revolves around the availability of qualified critical tradespeople. If a sufficient pool of skilled craftsman is not local, the contractor must identify where they will come from and at what potential premium.

Evaluating the space in which the trades will be working is also an important aspect to means and methods review. The contractor evaluates how tight the spaces are in which the trades will work and how this will affect productivity. Will the schedule require 10 pipers to work in an area that can really only accommodate four or five? If so, how will that loss of productivity be addressed so that the schedule is met without paying premiums? The contractor must assess if there is enough room to logically sequence the trades so that schedule and expected productivity are maintained. If not, the contractor develops a plan to mitigate the challenge, such as strategic use of multiple shifts.

Such considerations lead the contractor to examine the equipment and the process to determine what makes sense to "pre-fab" and what should be fabricated and installed in the field. This requires close scrutiny of how the processes will be connected. What utilities or systems can be skid-mounted and which ones should be individual components? These are all decisions that are made during constructability review. The advance planning allows the facility to be properly prepared to accommodate the equipment/process when it arrives, utilizing pre-planned rigging and installation plans to ensure adherence to the schedule.

As part of the constructability review process, the contractor should, ideally, also be part of the Factory Acceptance Testing (FAT) team to ensure compliance with the decisions made regarding the means and methods of rigging, verification of dimensions, and installation and connection to the facility's utilities. Also, it is most prudent to be involved with the FAT reviews, as the contractor will also be required to perform the Site Acceptance Testing (SAT) efforts.

Critical Subcontractor Considerations
Prequalification of the right subcontractors is critical to the successful construction of a biotech/life science facility. Understanding the more stringent safety requirements is one thing; understanding the more intense cGMP quality requirements for piping, ductwork, finishes, and clean build protocols is critical, as these are quite different from what nonqualified subcontractors might be accustomed to on general building projects. The level of documentation required to meet commissioning and qualification needs is also something that many subcontractors might not be aware of. Thus, these requirements must be incorporated into the bid documents so that there are no surprises and proper protocols are followed.

This is critically important if the project is performed utilizing an integrated construction, commissioning, and qualification approach, which saves time and money and eliminates many of the redundancies associated with the traditional approach to biotech/life science construction. With this method, more intensive commissioning efforts are required. Services also have to be procured in such a way as to ensure that they are completely understood by all parties, most notably that many systems are commissioned as they come on line, instead of waiting until everything is complete to begin the process. This also allows qualification to be overlapped, reducing the total time needed to get to engineering runs and the all-important start of "real" production.

Your Project, Your Needs
The successful biotech/life science facility construction project requires a unique construction services provider. The basic project concepts are familiar - schedule, budget, VE, constructability review, subcontractor qualification, and procurement, etc. - but as they say, the devil is in the details.
It is essential that your construction services partner understand your business model, not only today but also what your needs will be tomorrow and beyond. In developing that understanding, the construction services provider needs to engage very early on in the project with owner/facility end-users, operators and maintenance staff, the design team, and regulatory personnel. This will ensure that decisions made today facilitate efficient modification tomorrow, without significant facility disruption or inflated costs that could have been avoided with skillful and insightful advance planning.

Jerry Guillorn is vice president of sector business development for Structure Tone and has over 30 years of construction experience, the last 15 specializing in life science facilities.

Stephen Neeson, LEED® AP, is a 22-year construction veteran specializing in life science facilities and vice president of operations for Structure Tone's Lyndhurst, N.J., office.

Sponsor Index/Web Directory

Area Development Online   All contents copyright © 2013 Halcyon Business Publications, Inc.